
December 2004 www.stsc.hill.af.mil 13

Originally designed as a language to sup-
port “advanced software for a wide

variety of networked devices and embedded
systems” [1], the Java programming lan-
guage has much to offer the community of
embedded defense system developers. In
this context, Java is considered a high-level,
general-purpose programming language
rather than a special-purpose Web develop-
ment tool. Java offers many of the same
benefits as Ada, while appealing to a much
broader audience of developers. The
breadth of interest in Java has led to a large
third-party market for Java development
tools, reusable component libraries, training
resources, and consulting services.

Java borrows the familiar syntax of C
and C++. Like C++, Java is object-oriented,
but it is much simpler than C++ because
Java’s designers chose not to support com-
pilation of legacy C and C++ code. Due to
its simplicity, more programmers are able to
master the language. With that mastery, they
are more productive and less likely to intro-
duce errors resulting from misunderstand-
ing the programming language.

The Java write-compile-debug cycle is
faster than with traditional languages
because Java supports both interpreted and
just-in-time (JIT) compiled implementa-
tions. During development and rapid proto-
typing, developers save time by using the
interpreter. This avoids the time typically
required to recompile and relink object files.

Java application software is portable
because the Java specification carefully
defines a machine-independent intermediate
byte-code representation and a robust col-
lection of standard libraries. Byte-code class
files can be transferred between heteroge-
neous network nodes and interpreted or
compiled to native code on demand by the
local Java run-time environment. The bene-
fits of portability are four-fold:
1. Software engineers can develop and test

their embedded software on fast PC
workstations with large amounts of
memory, and then deploy on smaller,
less powerful embedded targets.

2. As embedded products evolve, it is often

necessary to port their code from one
processor and operating system to
another.

3. Cross compiling is no longer necessary.
The same executable byte code runs on
Power PC, Pentium, MIPS, XScale, and
others. This simplifies configuration
management.

4. The ability to distribute portable binary
software components lays the founda-
tion for a reusable software component
industry.
Certain features in Java’s run-time envi-

ronment help to improve software reliabili-
ty. For example, automatic garbage collec-
tion, which describes the process of identi-
fying all objects that are no longer being
used by the application and reclaiming their
memory, has been shown to reduce the total
development effort for a complex system by
approximately 40 percent [2]. Garbage col-
lection eliminates dangling pointers and
greatly reduces the effort required by devel-
opers to prevent memory leaks.

A high percentage of the Computer
Emergency Response Team advisories
issued every year are a direct result of buffer
overflows in system software. Java automat-
ically checks array subscripts to make sure
code does not accidentally or maliciously
reach beyond the ends of arrays, thereby
eliminating this frequently exploited loop-
hole.

The Java compiler and class loader
enforce type checking much more strongly
than C and C++. This means programmers
cannot accidentally or maliciously misuse
the bits of a particular variable to masquer-
ade as an unintended value.

Finally as part of the interface definition
for components, Java component develop-
ers can require that exceptions thrown by
their components be caught within the sur-
rounding context. In lower level languages,
uncaught exceptions often lead to unpre-
dictable behavior.

Another very useful Java feature is the
ability to dynamically load software compo-
nents into a running Java virtual machine
environment. New software downloads

serve to patch errors, accommodate evolv-
ing communication protocols, and add new
capabilities to an existing embedded system.
Special security checking is enforced when
dynamic libraries are installed to ensure they
do not compromise the integrity of the run-
ning system.

Though Java programs may be interpret-
ed, it is much more common for Java byte
codes to be translated to the target machine
language before execution. For many input-
/output-intensive applications, compiled
Java runs as fast as C++. For compute-
intensive applications, Java tends to run at
one-third to one-half the speed of compa-
rable C code.

Java Within Real-Time Systems
Although Java’s initial design was targeted to
embedded devices, its first public distribu-
tions did not support reliable real-time oper-
ation. Several specific issues are identified
here and discussed in greater detail in the
reference material [3, 4].

Automatic Garbage Collection
Though automatic garbage collection great-
ly reduces the effort required by software
developers to implement reliable and effi-
cient dynamic memory management, typical
implementations of automatic garbage col-
lection are incompatible with real-time
requirements. In most virtual machine envi-
ronments, the garbage collector will occa-
sionally put all the application threads to
sleep during certain uninterruptible opera-
tions while it analyzes the relationships
between objects within the heap to deter-
mine those no longer in use. The durations
of these garbage collection pauses are diffi-
cult to predict, and typically vary from half a
second to tens of seconds. These problems
can be addressed by using a virtual machine
that provides real-time garbage collection as
described in the following.

Priority Inversion
To guarantee that real-time tasks meet all of
their deadlines, real-time developers careful-
ly analyze the resource requirements of each

Using Java for Reusable Embedded
Real-Time Component Libraries

Java as a high-level programming language provides great support for a wide variety of networked devices and embedded sys-
tems. When used in a military context, Java promises to reduce development and maintenance costs significantly, while increas-
ing reliability, flexibility, and functionality of embedded systems. The secret in Java’s success lies in its ability to provide real-
time mission-critical response. This article discusses the characteristics of mature Java technologies that are able to meet these
important defense criteria.

Dr. Kelvin Nilsen
Aonix

Reuse

14 CROSSTALK The Journal of Defense Software Engineering December 2004

task and set their priorities according to
accepted practices of scheduling theory [5].
Thread priorities are used as a mechanism to
implement compliance with deadlines.
Unfortunately, many non-real-time operat-
ing systems and most Java virtual machine
implementations view priorities as heuristic
suggestions. This compromises real-time
behavior whenever the priorities of certain
threads are temporarily boosted in the inter-
est of providing fair access to the CPU or to
improve overall system throughput.
Another problem occurs when low-priority
tasks lock resources that are required by
high-priority tasks. In all of these cases, the
real-time engineer describes the problem as
priority inversion.

It is important to deploy real-time Java
components on virtual machines that honor
strict priorities, preventing the operating sys-
tem from automatically boosting or aging
thread priorities, and that build priority
inheritance or some other priority inversion
avoidance mechanism into the implementa-
tion of synchronization locks. Priority
inheritance, for example, elevates the priori-
ty of a low-priority thread that owns a lock
being requested by a high-priority thread so
that the low-priority thread can get its work
done and release the lock.

Timing Services
Standard Java timing services do not pro-
vide the exacting precision required by real-
time programmers. Applications that use
the Java sleep() service to control a periodic
task will drift off schedule because each
invocation of sleep() is delayed within its
period by the time required to do the peri-
odic computation, and because the duration
of each requested sleep() operation only
approximates the desired delay time. Also, if
a computer user changes the operating sys-
tem’s notion of time while a real-time Java
program is running, the real-time threads
will become confused because they assume
the system clock is an accurate, monotoni-
cally increasing time reference. Java virtual
machines designed for real-time operation
typically provide high-precision and drift-
free real-time timers that complement the
standard timing utilities.

Low-Level Control
As a modern, high-level programming lan-
guage, Java’s design intentionally precludes
developers from directly accessing hardware
and device drivers. The ideal is that hard-
ware device drivers should be abstracted by
the underlying operating system. However,
if Java is up to the task many software engi-
neers would rather do that development in
Java than in assembly language or C. Most
real-time Java implementations provide ser-

vices to allow real-time Java components to
store and fetch values from input/output
ports and memory-mapped devices.

Hard Real-Time Tradeoffs
Developers of hard real-time systems tend
to make different tradeoffs than soft real-
time developers. Hard real-time software
tends to be relatively small, simple, and stat-
ic. Often, economic considerations demand
very high performance and very small foot-
print of the hard real-time layers of a com-
plex system. To meet these requirements,
hard real-time developers generally recog-
nize they must work harder to deliver func-
tionality that could be realized with much
less effort if there were no timing con-
straints, or if all of the timing constraints
were soft real-time. Work is under way to
define special hard real-time variants of the
Java language [6, 7, 8, 9]. One noteworthy
difference is that the hard real-time variants
generally do not rely on any form of auto-
matic garbage collection.

Real-Time Garbage Collection
One of the most difficult challenges of real-
time development with Java is managing the
interaction between application code and
automatic garbage collection. For reliable
operation, there are a number of character-
istics that must be satisfied by the garbage
collection subsystem. These are described in
the following sections.

Preemptive
Typical real-time Java applications are divid-
ed into multiple threads, some allocate
memory and others manipulate data in pre-
viously allocated objects. Both classes of
threads may have real-time constraints.
Threads that do not allocate memory may
have tighter deadlines and run at higher pri-
orities than threads that do allocate memo-
ry. Garbage collection generally runs at a
priority level between these two classes of
priorities. Whenever a higher priority thread
needs to run, it must be possible to preempt
garbage collection. In some non-real-time
virtual machines, once garbage collection
begins, it cannot be preempted until it has
executed.

Incremental
To assure that garbage collection makes
appropriate forward progress, it is necessary
to divide the garbage collection effort into
many small work increments. Whenever
garbage collection is preempted, it must
resume with the next increment of work
after the preempting task relinquishes con-
trol. Real-time garbage collectors avoid the
need to restart operations when garbage col-
lection is preempted.

Accurate
We use the term accurate to describe a
garbage collector that always knows whether
a particular memory cell holds a reference
(pointer) or holds, for example, numerical
representations of integers and floating-
point values. In contrast, conservative garbage
collectors assume memory cells contain
pointers whenever there is any uncertainty
about the cell’s contents. If, interpreted as a
pointer, there is an object that would be
directly referenced by this pointer, then that
object is conservatively treated as live.
Because conservative garbage collectors
cannot promise to reclaim all dead memory,
they are less reliable for long-running mis-
sion-critical applications.

Defragmenting
Over the history of a long-running applica-
tion, it is possible for the pool of free mem-
ory to become fragmented. While a frag-
mented allocation pool may have an abun-
dance of available memory, the free memo-
ry is divided into a large number of very
small segments, which prevents the system
from reliably allocating large objects. It also
complicates the allocation of smaller seg-
ments because it becomes increasingly
important to efficiently pack newly allocated
objects into the available free memory seg-
ments (to reduce further fragmentation). In
general, a real-time virtual machine intended
to support reliable, long-running, mission-
critical applications must provide some
mechanism for defragmentation of the free
pool.

Paced
It is not enough to just preempt garbage col-
lection. In large and complex systems, cer-
tain activities depend on an ability to allocate
new memory to fulfill their real-time-con-
strained responsibilities. If the memory
pool becomes depleted, the real-time tasks
that need to allocate memory will necessari-
ly become blocked while garbage collection
executes. To prevent this priority inversion
from occurring, a real-time virtual machine
must pace garbage collection against the rate
of memory allocation.

Ideally, the system automatically dedi-
cates to garbage collection activities enough
CPU time to recycle dead memory as quick-
ly as the application is allocating memory.
However, it does so without dedicating any
CPU time that has already been set aside for
execution of the real-time application
threads, and without dedicating so much
CPU time that it completes way ahead of
schedule. In a soft or firm real-time system,
heuristics are applied to approximate this
ideal. The driving considerations are (1) to
prevent out-of-memory conditions from

Using Java for Reusable Embedded Real-Time Component Libraries

December 2004 www.stsc.hill.af.mil 15

stalling execution of real-time threads, and
(2) to maximize garbage collection efficien-
cy by delaying it as long as possible so that
each fixed-cost collection reclaims the
largest possible amount of dead memory.

Pacing Garbage Collection
Think of garbage collection as a servant to
all of the application threads that regularly
allocate memory. Because the total garbage
collection effort consists of many incre-
mental steps that ultimately benefit all
threads that allocate memory, the priority
assigned to garbage collection activities
must be greater than or equal to that of the
highest priority application thread that per-
forms memory allocation.

A pacing agent is the software compo-
nent responsible for allocating CPU time to
the garbage collection effort. In configuring
the pacing agent, it is important to identify
the maximum priority of threads that allo-
cate memory, the minimum priority
assigned to threads having real-time execu-
tion constraints, the shortest deadline corre-
sponding to real-time allocating threads, and
the percentages of CPU time to be reserved
for execution of real-time allocating and
non-allocating application threads respec-
tively.

Also, the pacing agent monitors the
application to discover behavioral trends,
including the rate of memory allocation and
the amount of live memory retained follow-
ing completion of each garbage collection
pass. The pacing agent combines all of this
information into a coherent approximation
of the application’s resource requirements.
The pacing agent uses this approximation to
guide its allocation of CPU time increments
to the garbage collection effort.

Among the heuristics applied by the
pacing agent are the following:
1. For a given phase of execution, assume

future memory allocation behavior
resembles previous allocation behavior.
An application programming interface
service allows the application to inform
the pacing agent each time it changes
phases. Within a phase, we assume that
allocation rates are constant and that
retained live-memory is linear in time.
This model approximates typical phases
such as initialization (during which time
large data structures are constructed),
steady state execution (during which
each new allocation is matched by
release of a previously allocated object
of similar size), and termination (during
which time large data structures may be
disassembled).

2. The pacing agent treats garbage collec-
tion as a real-time activity with priority at
least as high as that of the highest allo-

cating real-time thread. If, however, rate
monotonic analysis concludes that there
are insufficient CPU resources to guar-
antee that garbage collection will stay on
pace with allocation, the pacing agent
endeavors to steal additional CPU cycles
for garbage collection at the priority
immediately below the lowest priority
real-time allocating thread. The pacing
agent assures that garbage collection
never consumes more CPU time at real-
time priorities than would be available
according to the rules of rate monoton-
ic analysis [5].

3. To not compromise deadline compli-
ance of real-time allocating threads, the
pacing agent takes special care to ensure
that its triggering of real-time incre-
ments of garbage collection work is
periodic with a period no longer than
the shortest deadline of the allocating
real-time threads. Otherwise, it might
end up with the higher priority garbage
collection thread having a longer dead-
line than the lower priority allocating
real-time threads, and this would com-
promise the results of rate monotonic
analysis.
In Figure 1, the amount of allocatable

memory is represented by the hashed saw
tooth shape, measured according to the
scale on the left side of the chart. The
amount of CPU time consumed by the sim-
ulated air traffic control system’s real-time
Java application threads is shown in gray.
The percentage of CPU time dedicated to
real-time garbage collection is illustrated in
solid black. The CPU utilization scale is pro-
vided on the right-hand side of the chart.
These measurements were taken on a com-
puter that was also running a variety of
other non-Java tasks. The amount of CPU
time taken by the other tasks is not reported
directly in this chart. However, the impact of

these other activities can be seen indirectly.
For example, the garbage collection

effort spanning the time period from rough-
ly 550 to 560 seconds has been preempted
by some higher priority activity. During this
time span, we see that the garbage collection
effort lasts almost 10 seconds at a very low
utilization of less than 10 percent following
an initial burst of approximately 50 percent
CPU utilization. During this same time
span, the real-time Java application threads,
which happen to run at a higher priority
than the garbage collection thread in the
measured configuration, are consuming less
than 20 percent of the system CPU time.

From these observations, it is clear that
the Java virtual machine’s garbage collector
has been preempted by other higher priority
tasks running on the same computer. The
ability to mix components written in differ-
ent programming languages, as demonstrat-
ed with this example, is an important capa-
bility for mission-critical, real-time Java pro-
gramming.

This particular application is running in
a fairly predictable steady state as character-
ized by the following observations. First, the
slope of the available memory chart is
roughly constant whenever garbage collec-
tion is idle. This means the application’s allo-
cation rate is approximately constant.
Second, with exception of the first peak, the
heights of the available memory chart’s
peaks are roughly identical. This means the
amount of live memory retained by the
application is roughly constant. In other
words, the application is allocating new
objects at approximately the same rate it is
discarding old objects. The reason the first
peak is lower than the others is because
other high-priority tasks in the system have
preempted the garbage collector, delaying its
completion. During the time that garbage
collection is taking place, new objects con-

A
llo

ca
ta

b
le

M
em

o
ry

(M
b

yt
es

)

Real-Time (Seconds)

Garbage Collection Thread Utilization

Application Thread Utilization
Allocatable Memory

10

20

30

550 600 650 700

20%

40%

60%

80%

100%

C
P

U
U

ti
liz

at
io

n
(P

er
ce

n
t)

Figure 1: Simulated Air Traffic Control Application With Paced Incremental Garbage Collection

Reuse

16 CROSSTALK The Journal of Defense Software Engineering December 2004

tinue to be allocated. Therefore, this peak is
shorter than the others by roughly the
amount of memory that was allocated dur-
ing the extra wall-clock time required to
complete this particular pass of the garbage
collector.

Note that the percentage of CPU time
consumed by real-time Java application
threads is fairly predictable, ranging from
about 10 percent to 50 percent, but is by no
means constant. This is typical of real-world
mission-critical systems. Most real systems
exhibit variation in processing requirements
as a result of fluctuations in the system
workload. In systems that have real-time
constraints, resources are budgeted conserv-
atively to make sure there are enough
resources to handle the occasional burst of
demand for higher processing throughput.

Note that garbage collection is idle most
of the time. As memory becomes scarce,
garbage collection begins to run. In this
example, garbage collection is configured to
run at a lower priority than all of the real
time application threads. When properly
configured, the pacing agent will carefully
avoid delaying the application threads by any
more than the allowed scheduling jitter even
when the garbage collection thread is con-
figured to run at a priority higher than cer-
tain real-time Java threads.

Technology Adoption
The soft real-time garbage-collected Java
technologies described in this article are
commercially available in a cleanroom Java
virtual machine product that conforms to
the Java 2.0 Standard Edition (J2SE). The
technologies have been commercially
deployed in a number of mission-critical
applications ranging from terabit-per-sec-
ond fiber-optic switches to soft
Programmable Logic Controller control of
electric power generation and automation
of semiconductor manufacturing. Togeth-
er, these technology demonstrations repre-
sent over 100 developer-years of effort and
have produced over a million lines of real-
time Java code. Based on their experiences
with these projects, developers have consis-
tently found that they are much more pro-
ductive and their software has fewer errors
than when developing with C or C++.
Some of their specific experiences are
described in [10, 11].

The Nortel Optera HDX long-haul
fiber-optic telecommunications switch pro-
vides an example of a recent application of
real-time mission-critical Java. The hard-
ware architecture for this product is fairly
traditional. Redundant shelf controllers are
combined in a large air-cooled chassis with
a collection of line cards. In this product,
both the line cards and the shelf controllers

are based on PowerPC processors running
a commercial real-time operating system.

The line cards have responsibility for
the high-performance data transfer opera-
tions and implementation of communica-
tion protocol stacks. The shelf controllers
have responsibility for managing and provi-
sioning the resources contained on the line
cards. The high-performance code that
runs on the line cards is identified as con-
trol plane. The oversight software that runs
on the shelf controllers is known as the
management plane. Because shelf con-
trollers need to communicate with the line
cards, a small amount of management
plane software runs on each of the line
cards as well.

Previously, Nortel implemented the
management plane software in C++; the
most recent offering implements this func-
tionality in Java for several reasons:
1. C++ is described as a big language, hav-

ing many complex features that demand
highly skilled developers and constant
discipline to prevent creeping complex-
ity making it difficult to maintain devel-
oped code economically.

2. Dynamic memory management prob-
lems in the earlier C++ implementation
were particularly troublesome, leading
to a variety of memory leaks, dangling
pointers, and storage tramplers. Java’s
automatic garbage collection is to
address these issues.

3. The management plane software that
runs within the Optera HDX product
must communicate with higher-level
monitoring and supervisory compo-
nents running on large Unix servers. In
recent years, most of the Network
Management System (NMS) and
Element Management System (EMS)
software running on those Unix servers
has been replaced with Java technolo-
gies.
In considering whether to use real-time

Java for the management plane compo-
nents, Nortel engineers faced a variety of
questions. For example, were the develop-
ment tools mature enough to support effi-
cient development? Could Java virtual
machines run with sufficient reliability to
assure the five nines reliability requirements
common in the telecommunications indus-
try? Would a real-time Java virtual machine
be able to reliably support the 20-ms timing
constraints that are imposed on certain
management-plane reporting functions?
Nortel engineers conducted an extensive
yearlong evaluation of available Java tech-
nologies before making their final decision
to adopt Java for this product.

The task of implementing the Optera
HDX management plane software in Java

took approximately two years with a devel-
opment team comprised of more than 40
developers, resulting in a code base of
more than a million lines of real-time Java
code. Nortel has been selling the Optera
HDX product since March 2002. The mis-
sion-critical Java components have since
proven themselves in many months of suc-
cessful service in hundreds of commercial
deployments.

In evaluating their experience using
Java, Nortel engineers have reported the
following findings:
• Java software has been more reliable

and Java developers have been more
productive than their C++ counter-
parts.

• A large software module developed for
the Optera HDX product was easily
ported to another hardware platform
for a related product.

• The object-oriented discipline utilized
with Java made it possible to easily
restructure the code to accommodate
new requirements midway through
development.

• Based on their successes with Java,
Nortel intends to use more Java in next-
generation products.

• Mistakes made by C programmers
occasionally compromise the integrity
of the Java virtual machine environ-
ment; thus there is motivation to devel-
op lower level high-performance mis-
sion-critical Java to complement the
soft real-time mission-critical Java that
they have already deployed.

Standardization
The standards development being done by
the Open Group’s Real-time and
Embedded Systems Forum [12] will estab-
lish a foundation that encourages competi-
tive pricing and innovation among Java
technology vendors while assuring portabil-
ity and interoperability of real-time compo-
nents written in the Java language. These
standards, which are to be endorsed both
by the Java Community Process and the
International Organization for Standardi-
zation, will address a much broader set of
requirements than the existing real-time
specification for Java.

In particular, the standard for safety-
critical Java will address concerns regarding
certification under the Federal Aviation
Administration’s DO-178B guidelines.
Beyond requirements for real time, the stan-
dard for mission-critical Java will address
issues of portability, scalability, perfor-
mance, memory footprint, abstraction, and
encapsulation. Work within the Open
Group is ongoing. The current plan is to
deliver the safety-critical specification, refer-

Using Java for Reusable Embedded Real-Time Component Libraries

December 2004 www.stsc.hill.af.mil 17

ence implementation, and Technology
Compatibility Kit by first quarter 2005.
Working documents describing the Open
Group’s Real-time and Embedded Systems
Forum’s ongoing work standardization
activities related to real-time Java are avail-
able at <www.opengroup.org/rtforum/rt_
java> and <www.opengroup.org/rtforum/
rt_safety>.

Table 1 summarizes key differences
between different mission-critical Java tech-
nologies. The key points emphasized in this
table are described in the following bulleted
paragraphs:
• The standard J2SE Java libraries are keys

to enabling high developer productivity,
software portability, and ease of mainte-
nance. Thus, it is important to provide
all of these libraries to the soft real-time
developer. Unfortunately, the standard
J2SE libraries have a significant foot-
print requirement (at least four
megabytes [Mbytes]) and depend heavily
on automatic garbage collection, which
is not available in the hard real-time
environment. Thus, the hard real-time
and safety-critical versions of Java can-
not use the standard libraries. The hard
real-time mission-critical Java standard
will support the subset of the
Connected Device Configuration librar-
ies that is appropriate for a non-garbage-
collected environment running on a
limited-service, hard real-time executive.
The safety-critical Java standard will
support an even smaller library subset,
pared down to facilitate safety certifica-
tion efforts.

• The soft real-time mission-critical Java
standard supports real-time garbage col-
lection as described in this article. To
improve throughput, determinism, and
memory footprint requirements, the
hard real-time and safety-critical Java
standards do not offer automatic
garbage collection.

• In traditional Java and soft real-time
mission-critical Java, memory is
reclaimed by garbage collection. There
is no application programmer interface
to allow developers to explicitly release
objects, as this would decrease software
reliability by introducing the possibility
of dangling pointers. In the hard real-
time mission-critical environment, we
allow developers to explicitly reclaim
the memory associated with certain
objects. This is a dangerous service
that must be used with great care. It is
necessary, however, to support a
breadth of real-world application
requirements. In safety-critical systems,
we prohibit manual deallocation of
memory as use of this service would

make it very difficult to certify safe
operation of the software system.

• Traditional Java and soft real-time mis-
sion-critical Java allocate all objects in
the heap. In the absence of automatic
garbage collection, hard real-time and
safety-critical Java developers can use
special protocols to allocate certain
objects on the run-time stack. The pro-
tocol includes compile-time enforce-
ment of rules that assure that no point-
ers to these stack-allocated objects sur-
vive beyond the life-time of the objects
themselves.

• Dynamic class loading allows new
libraries and new application compo-
nents to be loaded into a virtual
machine environment on the fly. This is
a very powerful capability, to be provid-
ed as broadly as possible. However, cur-
rent safety certification practices are too
restrictive to allow use of this capability
in a safety-critical system.

• In the specification for traditional Java,
thread priorities are mere suggestions.
The virtual machine implementation
may honor these suggestions, or it may
ignore them. It may, for example,
choose to treat all priorities with equal

scheduling preference, or it may even
choose to give greater scheduling pref-
erence to threads running at lower pri-
orities. In all of the real-time Java spec-
ifications, priorities are distinct and
priority ordering is strictly honored.
The safety-critical Java specification
implements strict first-in-first-out
scheduling within priority levels, with
no time slicing. This is the more com-
mon expectation for developers of
safety-critical systems.

• Traditional Java does not offer any
mechanism to avoid priority inversion,
which might occur when a low-priority
task locks a resource that is subsequent-
ly required by a high-priority task for it
to make progress. The hard and soft
real-time mission-critical specifications
both support priority inheritance.
Additionally, the hard real-time mission-
critical Java standard and the safety-crit-
ical Java standard will support the prior-
ity ceiling protocol in which particular
locks are assigned ceiling priorities,
which represent maximum priority of
any thread that is allowed to acquire this
particular lock. Whenever a thread
obtains a lock, its priority is automatical-

Mission-Critical Java
Traditional

Java
Soft Real

Time
Hard Real

Time
Safety
Critical

Library Support
J2SE J2SE

Subset of
CDC

Very restrictive
subset of CDC

Garbage Collection Pauses in excess
of 10 seconds

Real Time No garbage collection

Manual Memory
Deallocation

Manual memory deallocation
is disallowed

Allows
manual

deallocation

No manual
deallocation

Stack Memory
Allocation No Safe stack allocation

Dynamic Class
Loading Yes No

Thread Priorities Unpredictable
priority clustering

and aging

Fixed priority, time-sliced
preemptive, with distinct

priorities

Fixed priority,
distinct priorities,
no time slicing

Priority Inversion
Avoidance

None
Priority

inheritance

Priority
inheritance
and priority

ceiling

Priority ceiling

Asynchronous
Transfer of Control No Yes No

Approximate
Performance One-third to two-

thirds speed of C

Within 10
percent of
traditional

Java speed

Within 10 percent of C speed

Typical Memory
Footprint 16+ Mbytes 16+ Mbytes

64 Kbytes -
1 Mbyte

64-128 Kbytes

Table 1: Proposed Differentiation Between Java Technologies

Reuse

18 CROSSTALK The Journal of Defense Software Engineering December 2004

ly elevated to the ceiling priority level. If
a thread with higher priority than the
lock’s ceiling priority attempts to acquire
that lock, a run-time exception is gener-
ated. The priority ceiling mechanism is
most efficient and is simpler to imple-
ment and to analyze for static systems in
which all of the threads and their priori-
ties are known before run time. The pri-
ority inheritance mechanism deals better
with environments that experience
dynamic adjustments to the thread popu-
lation or to their respective priorities.

• Asynchronous transfer of control allows
one thread to interrupt another in order
to have that other thread execute a special
asynchronous event handler and then
either resume the work that had been pre-
empted or abandon its current efforts.
This capability, missing from traditional
Java, is very useful in many real-time sce-
narios. We omit this capability from safe-
ty-critical systems because the asynchro-
nous behavior is incompatible with
accepted practices for safety certification.

• Because of the high-level services sup-
ported by Java, including automatic
garbage collection, array subscript check-
ing, dynamic class loading, and JIT
compilation, traditional Java generally
runs quite a bit slower than compara-
ble algorithms implemented in, for
example, the C language. Our experi-
ence with implementations of soft
real-time Java is that they run a bit
slower than traditional Java, because
real-time garbage collection imposes a
greater penalty on typical thread per-
formance than non-real-time garbage
collectors. The various compromises
represented in the hard real-time and
safety-critical Java specifications are
designed to enable execution efficiency
that is within 10 percent of typical C
performance.

• Because of the size of the standard J2SE
libraries and a just-in-time compiler,
which is present in a typical J2SE deploy-
ment, the typical J2SE deployment
requires at least 16 Mbytes of memory.
Of this total, about half is available for
application code and data structures.
Depending on the needs of a particular
application, the memory requirements
may range much higher, up to hundreds
of Mbytes for certain applications. Hard
real-time mission critical Java is designed
specifically to support very efficient
deployment of low-level, hard real-time
and performance-constrained software
components. Though different applica-
tions exhibit different memory require-
ments, targeted applications typically run
from about 64 kilobytes (Kbytes) up to a

full Mbyte in memory requirements.
Safety-critical deployments tend to be
even smaller. This is because the costs of
certification are so high per line of code
that there is strong incentive to keep safe-
ty-critical systems as small as possible.

Conclusions
Increasingly, the military relies upon intel-
ligence implemented as real-time software
components to give their warfighters com-
petitive advantage in modern conflicts.
Developing and maintaining these large
software systems represents tremendous
cost and a high degree of risk. High-level
programming languages like Java promise
to reduce development and maintenance
costs by two- to 10-fold, while increasing
the reliability, flexibility, and functionality
of embedded real-time systems.

Though early implementations of the
Java virtual machine failed to address the
needs of mission-critical real-time devel-
opers, newer technologies bring the full
benefits of Java to this very important
defense community.u

References
1. Gosling, J., and H. McGilton. “The Java

Language Environment: A White
Paper.” Mountain View, CA: Sun
Microsystems, Inc., May 1996 <http://
java.sun.com/docs/white/ langenv>.

2. Rovner, P. “On Adding Garbage
Collection and Runtime Types to a
Strongly-Typed, Statically Checked
Concurrent Language.” Palo Alto, CA:
Xerox Palo Alto Research Center, 1984
<www.parc.xerox.com/about/history/
pub-historical.html>.

3. Nilsen, K. “Issues in the Design and
Implementation of Real-Time Java.”
Real-Time Magazine Mar. 1998 <www.
realtime-info.be/magazine/98q1/
1998q1_p009.pdf>.

4. Nilsen, K. “Adding Real-Time
Capabilities to the Java Programming
Language.” Communications of the
ACM 41.6 (June 1998): 49-56 <http://
doi.acm.org/10.1145/276609.276619>.

5. Klein, M., T. Ralya, B. Pollak, and R.
Obenza. A Practitioner’s Handbook for
Real-Time Analysis: Guide to Rate
Monotonic Analysis for Real-Time
Systems. Kluwer Academic Publishers,
Nov. 1993.

6. Bollella, G., J. Gosling, B. Brosgol, P.
Dibble, S. Furr, and M. Turnbull. The
Real-Time Specification for Java.
Addison-Wesley, Jan. 2000.

7. J. Consortium’s Real-Time Java Working
Group, et al. “Real-Time Core Exten-
sions.” Cupertino, CA: J. Consortium. 2
Sept. 2000 <www.j-consortium.org/

rtjwg/rtce.1.0.14. pdf>.
8. Nilsen, K., and A. Klein. Issues in the

Design and Implementation of Efficient
Interfaces Between Hard and Soft Real-
Time Java Components. Proc. of the
Workshop on Java Technologies for
Real-Time and Embedded Systems.
Catania, Sicily, Italy, 3-7 Nov. 2003.

9. Nilsen, K. Doing Firm Real-Time With
J2SE APIs. Proc. of the Workshop on
Java Technologies for Real-Time and
Embedded Systems. Catania, Sicily, Italy,
3-7 Nov. 2003.

10. NewMonics, Inc. “Calix Success Story.”
Tucson, AZ: NewMonics, Inc., May
2003 <www.newmonics.com/perceval/
calix_whitepaper. shtml>.

11. NewMonics, Inc. “Nortel Success
Story.” Tucson, AZ: NewMonics, Inc.,
Oct. 2003 <www.newmonics.com/
perceval/nortel_whitepaper. shtml>.

12. The Open Group. Real-time and
Embedded Systems Forum <www.
opengroup.org/rtforum>.

About the Author

Kelvin Nilsen, Ph.D., is
chief technology officer
of Aonix, an internation-
al supplier of mission-
and safety-critical soft-
ware solutions. Nilsen

oversees the design and implementation
of the PERC real-time Java virtual
machine along with other Aonix prod-
ucts, including Ameos MDA tools;
ObjectAda compilers, development envi-
ronment, and libraries; SmartKernel run-
time executives; and commercial off-the-
shelf safety certification support.
Nilsen’s pioneering research in real-time
programming resulted in seven commer-
cial patents. His seminal research on the
topic of real-time Java led to the found-
ing of NewMonics, a leader in advanced
clean-room Java technologies. In 2003,
Aonix acquired NewMonics. Nilsen has a
Bachelor of Science in physics from
Brigham Young University and a Master
of Science and doctorate degree both in
computer science from the University of
Arizona.

Aonix
877 S.Alvernon WY STE 100
Tucson, AZ 85711
Phone: (520) 323-9011
Fax: (520) 323-9014
E-mail: kelvin@aonix.com

